Dynamic Data Dependence Tracking and its Application to Branch Prediction

نویسندگان

  • Lei Chen
  • Steven G. Dropsho
  • David H. Albonesi
چکیده

To continue to improve processor performance, microarchitects seek to increase the effective instruction level parallelism (ILP) that can be exploited in applications. A fundamental limit to improving ILP is data dependences among instructions. If data dependence information is available at run-time, there are many uses to improve ILP. Prior published examples include decoupled branch execution architectures and critical instruction detection. In this paper, we describe an efficient hardware mechanism to dynamically track the data dependence chains of the instructions in the pipeline. This information is available on a cycle-by-cycle basis to the microengine for optimizing its performance. We then use this design in a new value-based branch prediction design using Available Register Value Information (ARVI). From the use of data dependence information, the ARVI branch predictor has better prediction accuracy over a comparably sized hybrid branch predictor. With ARVI used as the second-level branch predictor, the improved prediction accuracy results in a 12.6% performance improvement on average across the SPEC95 integer benchmark suite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Target Tracking Based on Virtual Grid in Wireless Sensor Networks

One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...

متن کامل

A study on the accuracy of motion tracking of thoracic tumors at radiotherapy with external surrogates

Introduction: In radiotherapy with external surrogates, exact information of tumor position is one of the key factors that improves treatment delivery. Many dynamic tumors in thorax region of patient move mainly due to respiration and are known as intra-fractional motion error that must be compensated, as well. One of clinical strategy is using Stereotactic Body Radiation Thera...

متن کامل

Estimating Algorithms for Prediction and Spread of a Factor as a Pandemic: A Case Study of Global COVID-19 Prevalence

Background: This paper presents open-source computer simulation programs developed for simulating, tracking, and estimating the COVID-19 outbreak. Methods: The programs consisted of two separate parts: one set of programs built in Simulink with a block diagram display, and another one coded in MATLAB as scripts. The mathematical model used in this package was the SIR, SEIR, and SEIRD models re...

متن کامل

A Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks

Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...

متن کامل

A Hardware-Based Method for Dynamically Detecting Instruction-Isomorphism and its Application to Branch Prediction

This paper proposes a hardware-based heuristic method for implementing various transformations and detecting isomorphism in the dynamic dependence graph of a program. This enables on the fly identificationof isomorphic instructionswhich may be useful for improving the performance of several microarchitectural mechanisms. This work considers the application of the proposed method to conditional ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003